Loading [MathJax]/jax/output/CommonHTML/jax.js

🎈

Calculating Vega in Your Head
30 Nov 2019

TL;DR

βˆ‚Vβˆ‚Οƒ=0.4Γ—SΓ—βˆšt

Derivation

Black Scholes for a Call/Put option is

V=Ο•[SN(Ο•d1)βˆ’Keβˆ’rtN(Ο•d2)]d1,2=logSK+(rΒ±12Οƒ2)tΟƒβˆšt

It’s easy to see

βˆ‚Vβˆ‚Οƒ=SΓ—n(d1)Γ—βˆšt

With ATMF strike, K=Sert,

d1,2=Β±12Οƒβˆšt

Here comes the approximation part, for short expiries and a wide range of vols,

n(12Οƒβˆšt)β‰ˆ0.4

It’s easier to check this plot of n(d1) against volatility for different expiries. Immediately we see that even in an extreme market with 100% vol, the approximation is largely correct for short expiries.

$$n(d_1) vs Volatility$$

Shortcut

Recall that we derived the approximation of ATM option price in Calculating Option Price in Your Head,

C=P=0.4Γ—SΓ—Οƒβˆšt

immediately you have vega

V=βˆ‚Cβˆ‚Οƒ=0.4Γ—SΓ—βˆšt

In Practice

We notice that ATM volatility does not have a strong impact on ATM Vega, this is expecially true for short-dated options.

In Forex, vega are often quoted in asset bps for 1% vol move. Above approximation intepreted in such a style is

βˆ‚Vβˆ‚Οƒ=40Γ—βˆšt

Junior traders often find the below table of approximated vega for standard expiries helpful.

Expiry 1d 1w 2w 1m 2m 3m 6m 9m 1y
Vega (asset bps) 2.09 5.52 7.81 11.63 16.31 20.03 28.17 34.57 39.89

Exercise

Q: What is the vega amount for a 100 mio notional USDJPY 1m ATM option?

A: From above table we know the vega in asset bps is 11.63, thus total vega in USD is

11.63eβˆ’4Γ—100e6=116.3e3

The vega amount is 116.3 K USD.


Til next time,
Jianfeng at 22:08